NAME.				
PERIOD	: DATE:	Study	guide Kine	tics and nuclear chemistry
USE TH	E GRAPHS FOR THE FOLL	OWING QUESTIONS		Thermodynamics Graph
Use the 1.	first graphs for 1-8 This is a(n) (endotherm i	c/endothermic) graph		250
2.	The surroundings are get	ting (hotter/colder).		200
3. 4.	The reaction is (releasin ; The enthalpy (H) of the re		kJ.	Enthalpy (kJ) 100
5.	The enthalpy (H) of the p	roducts is	kJ.	1 2 3 4 5 6 7 8 9 10 11 12
6.	The change in enthalpy (I	OH) of the reaction is	kJ.	Time (mins)
7.	The activation energy of t	he reaction is	kJ.	Thermodynamics Graph
8.	The (products/reactant	s) have more potential e	energy.	
	second graph for 9-15 This is an (exothermic/ 6	ndothermic) graph.		200
10.	The enthalpy (H) of the re	eactants is	kJ.	Enthalpy (kJ) 100
11.	The enthalpy (H) of the p	roducts is	kJ.	50
12.	The change in enthalpy (I	OH) of the reaction is	kJ.	1 2 3 4 5 6 7 8 9 10 11 12 1
13.	The activation energy of t	he reaction is	kJ.	Time (mins)
14.	The surroundings are get	ting (hotter/colder).		
15.	The (products/reactant	s) have more potential	energy.	
16.	Define reaction rate.			
17.	How is the reaction rate r	nonitored?		
18.	What does a cataylist do?			
19.	How does a catalyt work?			
20.	Name three ways to slow	a reaction down.		
21.	How does one of the metl	nods used in question 20) work?	
22.	What two things need to	nappen in order for a re	action to be	e effective?

b. Isotope e. c. Strong Force f. Chain reaction

24. Describe the differences between chemical reactions and nuclear reactions.

- 25. How do you know if an isotope is stable or not?

23. Define the following: a. Nucleon

- 26. Write the nuclear symbol for the following:
 - a. Calcium-22 b. Iodine-131 c. Lead-210 d. Curium-245

d. Radioactivity

Fission

Critical mass

h. Fusion

27. Fill in the table below:

Radiation type	Description	Symbol	Charge	Relative penetrating power
Alpha (α)				
Beta (β)				
Gamma (γ)				

28.	If an isotope undergoes decay,	the radioactive particle is loca	ited on the	side of the equation. If an isotop	Э€
	is bombarded, the radioactive	particle is located on the	side of the ed	quation.	

29. Fill in the table below

Summary of Radioactive Decay Processes

Type	Particle emitted	Change in mass number	Change in atomic number
Alpha decay			
Beta decay			
Positron emission			
Gamma emission			

30.	Write	/complete	the following	balanced	nuclear	reactions
-----	-------	-----------	---------------	----------	---------	-----------

a.	²¹⁸ ₈₄ Po→	⁴ ₂ He +	
----	----------------------------------	--------------------------------	--

d. Oxygen-15 undergoes positron emission

b.
$$^{40}_{19}\text{K} \rightarrow ^{14}_{7}\text{N} + _____$$

e. Alpha decay of astatine-213

c.
$$\rightarrow$$
 222₈₆Rn + 4₂He

f. Nickel-60 undergoes gamma emission

- 31. What will decay to produce lead-206 and an alpha particle? Write the entire nuclear reaction.
- 32. What type of nuclear radiation is produced when potassium-43 decays to produce calcium-43?
- 33. Write the nuclear equation showing the radioactive decay of carbon-14 if it undergoes beta decay
- 34. How do nuclear reactors work? What are the advantages and disadvantages of nuclear power?
- 35. Why are fusion reactions hard to maintain?
- 36. How do we use carbon-14 for radioactive dating?
- 37. List and describe how radiation can be beneficial.\Fill in the blanks for the following decay series:

$$^{238} _{92} \text{U} \rightarrow ^{4} _{2} \text{He} + \underline{\hspace{2cm}} \rightarrow ^{0} _{-1} \beta + \underline{\hspace{2cm}} \rightarrow ^{234} _{91} \text{Pa} \rightarrow \underline{\hspace{2cm}} + ^{234} _{92} \text{U} \rightarrow ^{4} _{2} \text{He} + \underline{\hspace{2cm}} \rightarrow \underline{\hspace{2cm}} + ^{226} _{88} \text{Ra}$$